Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy.

نویسندگان

  • Véronique Calleja
  • Simon M Ameer-Beg
  • Borivoj Vojnovic
  • Rudiger Woscholski
  • Julian Downward
  • Banafshé Larijani
چکیده

To be able to detect in situ changes in protein conformation without perturbing the physiological environment would be a major step forward in understanding the precise mechanism occurring in protein interaction. We have developed a novel approach to monitoring conformational changes of proteins in intact cells. A double-labelled fluorescent green fluorescent protein-yellow fluorescent protein (GFP-YFP) fusion protein has been constructed, allowing the exploitation of enhanced-acceptor-fluorescence (EAF)-induced fluorescence resonance energy transfer (FRET). Additionally, a novel fusion partner, YFP(dark), has been designed to act as a sterically hindered control for EAF-FRET. Any conformational changes will cause a variation in FRET, which, in turn, is detected by fluorescence lifetime imaging microscopy ("FLIM"). Protein kinase B (PKB)/Akt, a key component of phosphoinositide 3-kinase-mediated signalling, was selected for this purpose. Although conformational changes in PKB/Akt consequent to lipid binding and phosphorylation have been proposed in models, its behaviour in intact cells has not been tractable. We report here that platelet-derived-growth-factor ("PDGF") stimulation of NIH3T3 cells expressing the GFP-Akt-YFP construct resulted in a loss of FRET at the plasma membrane and hence a change in PKB/Akt conformation. We also show that the GFP-Akt-YFP construct conserves fully its functional integrity. This novel approach of monitoring the in situ conformational changes has broad application for other members of the AGC kinase superfamily and other proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring Biosensor Activity in Living Cells with Fluorescence Lifetime Imaging Microscopy

Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events,...

متن کامل

Novel Application of Fluorescence Lifetime and Fluorescence Microscopy Enables Quantitative Access to Subcellular Dynamics in Plant Cells

BACKGROUND Optical and spectroscopic technologies working at subcellular resolution with quantitative output are required for a deeper understanding of molecular processes and mechanisms in living cells. Such technologies are prerequisite for the realisation of predictive biology at cellular and subcellular level. However, although established in the physical sciences, these techniques are rare...

متن کامل

The Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function

The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...

متن کامل

The Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function

The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...

متن کامل

Imaging molecular interactions in living cells.

Hormones integrate the activities of their target cells through receptor-modulated cascades of protein interactions that ultimately lead to changes in cellular function. Understanding how the cell assembles these signaling protein complexes is critically important to unraveling disease processes, and to the design of therapeutic strategies. Recent advances in live-cell imaging technologies, com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 372 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003